Representations of affine Lie algebras,

نویسنده

  • Pavel I Etingof
چکیده

The author considers an elliptic analogue of the Knizhnik-Zamolodchikov equations – the consistent system of linear differential equations arising from the elliptic solution of the classical Yang-Baxter equation for the Lie algebra sl N. The solutions of this system are interpreted as traces of products of intertwining operators between certain representations of the affine Lie algebra sl N. A new differential equation for such traces characterizing their behavior under the variation of the modulus of the underlying elliptic curve is deduced. This equation is consistent with the original system. It is shown that the system extended by the new equation is modular invariant , and the corresponding monodromy representations of the modular group are defined. Some elementary examples in which the system can be solved explicitly (in terms of elliptic and modular functions) are considered. Another example leads to a special case of Heun's equation – a second order Fuchsian equation with four singular points. The monodromy of the system is explicitly computed with the help of the trace interpretation of solutions. Projective representations of the braid group of the torus and representations of the double affine Hecke algebra are obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Realization of locally extended affine Lie algebras of type $A_1$

Locally extended affine Lie algebras were introduced by Morita and Yoshii in [J. Algebra 301(1) (2006), 59-81] as a natural generalization of extended affine Lie algebras. After that, various generalizations of these Lie algebras have been investigated by others. It is known that a locally extended affine Lie algebra can be recovered from its centerless core, i.e., the ideal generated by weight...

متن کامل

Universal Central Extension of Current Superalgebras

Representation as well as central extension are two of the most important concepts in the theory of Lie (super)algebras. Apart from the interest of mathematicians, the attention of physicist are also drawn to these two subjects because of the significant amount of their applications in Physics. In fact for physicists, the study of projective representations of Lie (super)algebras  are very impo...

متن کامل

2 9 M ay 2 00 2 REPRESENTATIONS OF DOUBLE AFFINE LIE ALGEBRAS

The representation theory of Kac–Moody algebras, and in particular that of affine Lie algebras, has been extensively studied over the past twenty years. The representations that have had the most applications are the integrable ones, so called because they lift to the corresponding group. The affine Lie algebra associated to a finite-dimensional complex simple Lie algebra g is the universal (on...

متن کامل

Unitary Representations of Some Infinite Dimensional Lie Algebras Motivated by String Theory on AdS3

We consider some unitary representations of infinite dimensional Lie algebras motivated by string theory on AdS3. These include examples of two kinds: the A,D,E type affine Lie algebras and the N = 4 superconformal algebra. The first presents a new construction for free field representations of affine Lie algebras. The second is of a particular physical interest because it provides some hints t...

متن کامل

coordinatized by quantum tori

We use a fermionic extension of the bosonic module to obtain a class of B(0, N)-graded Lie superalgebras with nontrivial central extensions. 0 Introduction B(M − 1, N)-graded Lie superalgebras were first investigated and classified up to central extension by Benkart-Elduque (see also Garcia-Neher’s work in [GN]). Those root graded Lie superalgebras are a super-analog of root graded Lie algebras...

متن کامل

Ju n 20 07 HIGHEST - WEIGHT THEORY FOR TRUNCATED CURRENT LIE ALGEBRAS

is called a truncated current Lie algebra, or sometimes a generalised Takiff algebra. We shall describe a highest-weight theory for ĝ, and the reducibility criterion for the universal objects of this theory, the Verma modules. The principal motivation, beside the aesthetic, is that certain representations of affine Lie algebras are essentially representations of a truncated current Lie algebra....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993